

BIOLOGICAL RESEARCH LABORATORY

THE PENNSYLVANIA STATE UNIVERSITY University Park, PA

PENN STATE AE SENIOR CAPSTONE PROJECT MICHAEL CARBONARA | CONSTRUCTION OPTION ADVISOR: DR. ROBERT LEICHT

Project Background

Virtual Mockups

PROJECT LOCATION

- WILEY LN, UNIVERSITY PARK, PA
- THE PENNSYLVANINA STATE UNIVERSITY

BUILDING SIZE

- AREA : 20,000 SF
- 3 STORIES

PROJECT PARAMETERS:

- COST: \$23 MILLION GMP
- AUGUST 2011 JANUARY 2013

BIOLOGICAL RESEARCH LABORATORY

MICHAEL CARBONARA | CONSTRUCTION OPTION | April 13, 2012

GEOGRAPHICAL LOCATION

Project Background

Virtual Mockups

PROJECT PARTICIPANTS

- UNIVERSITY

BUILDING DESIGN

- MECHANICAL (Mezzanine and Penthouse)
- Bio-containment Labs
- Wet Mechanical / Electrical

BIOLOGICAL RESEARCH LABORATORY

OWNER: THE PENNSYLVANIA STATE

CONSTRUCTION MANAGER: TORCON ARCHITECT: PAYETTE ASSOCIATES OWNER'S REPRESENTATIVE: OPP

ELEVATION VIEW – PAYETTE ASSOCIATES

BUILDING SYSTEMS

- STRUCTURAL SYSTEM
 - STEEL AND METAL DECKING
- MECHANICAL SYSTEM
 - ELEVEN AIR-HANDLING UNITS, VAV SYSTEM
 - HYDRONIC SYSTEM
- ELECTRICAL SYSTEM
 - MULTIPLE LINES FOR REDUNDANCY

• FAÇADE

- DECORATIVE VENEER BLOCK
- ALUMINUM CLADDING

Modularization of the Laboratory Spaces

Virtual Mockups

ANALYSIS I

PROBLEM

- THE BIOLOGICAL RESEARCH LABORATORY
 - WALL PENETRATIONS
 - MATERIAL FINISHES
 - GLOVE TEXT

Wall Imperfection, Courtesy of NIAID

PROBLEM

TRANSPORTATION

BIOLOGICAL RESEARCH LABORATORY

QUALITY OF WORK IS A CONCERN OF

GOAL

- INCREASE FINISHED QUALITY OF WORK
- **REDUCTION IN THE SCHEDULE**
- **REDUCTION IN COST**

TRANSPORTATION:

- **RULE FOR THE WIDTH OF A VEHICLE: 12 FEET**
- RULE FOR THE HEIGHT OF A VEHICLE: 13.5 FEET
- RULE FOR THE LENGTH OF A VEHICLE: 12 FEET
- WEIGHT OF EACH POD IS APPROXIMATELY: 6 TONS

Combination of Vehicles	Maximum Gross Weight In Pounds
Two-axle truck tractor & single-axle semitrailer	58,400
Two-axle truck tractor & two-axle semitrailer	73,280
Three-axle truck tractor & single-axle semitrailer	73,280
Two-axle truck & two-axle trailer	73,280

OFFSITE PRODUCTION:

- LOCATION: 2952 BENNER PIKE 4.5 MILES AWAY
- 38,000 SF WITH A PRICE OF \$7/SF

ch a small imperfe ft) can tear a glove (rig promising the

riment and safety of

Torn Glove. Courtesy of NIAID

MICHAEL CARBONARA | CONSTRUCTION OPTION | April 13, 2012

F all

Modularization of the Laboratory Spaces

Virtual Mockups

ANALYSIS I

BIOLOGICAL RESEARCH LABORATORY

SPACIAL BREAKDOWN LABORATORY SPACES BROKEN DOWN (11' X 21')

- SPACES OUTLINED IN AND STORAGE SPACES
- SPACES OUTLINED IN ROOMS

ARE OFFICES, BATHROOM

ARE BSL-2 AND BSL-3

DESIGN

- 2X4 METAL STUD CONSTRUCTION
- 5/8" GYPSUM WALL BOARD
 - IMPACT RESISTANT
- BAT INSULATION
- **EPOXY WALL FINISH**
- **2X3 CONSTRUCTION FLOOR WITH A STEEL** PLATE

DESIGN FOR TRANSPORTATION

- **DOORS WILL BE INSTALLED ON SITE**
- EXCESS DRYWALL AROUND DOORS
 - PREVENTS CRACKING
- **ADDTION BRACING ON CEILING AT LIFT** POITNS

Modularization of the Laboratory Spaces

Virtual Mockups

BRL NORTH-EAST CORNER

MODULAR STAGING

- **PROPOSED AREA FOR INSTALLATION IS IN NORTH-**EAST CORNER
- **ALUMINUM CLADDING** PANELING
 - **PREVENTS THE DISRUPTION OF THE MASONARY TRADE**
- **INSTALL MODULAR UNITS FROM LEFT TO RIGHT**

CRANE SELECTION TRUCK MOUNTED BOOM CRANE WAS CHOSEN • 25 TONS AT A 10 FT RADIUS

Crane	Crew	Daily Output	Labor Hours	Unit	Days	Labor	Equipment	Total	Total Incl O&P	Cost
truck mounted lattice boom crane										11
25 tons/10 foot radius	A-31	1	8	Day	5	355	1025	1380	1650	8250

BIOLOGICAL RESEARCH LABORATORY

UTILITIES

- FIELD FABRICATED DRYWALL CEILING
 - DROP CEILING CONFLICT
- **RE-ROUTE ELECTRICAL DUE TO NEC 2008**
- PLUMBING TO MECHANICAL BASEMENT

Modularization of the Laboratory Spaces

Virtual Mockups

ANALYSIS I

SCHEDULE

ABILITY TO COMPRESS A 10 MONTH **SCHEDULE TO 6 MONTHS**

Labora tory Compartments	Duration	Stert	Finish
Partition Layout & Top Track	68 days	Fri 2/24/12	Tue 5/29/12
Partition Framing	47 days	Fri 4/6/12	Mon 6/11/12
HM Door Frames	15 days	Fri 4/6/12	Thu 4/26/12
Partition Grouting	5 days	Fri 5/4/12	Thu 5/10/12
HM Door Frames	5 days	Tue 6/5/12	Mon 6/11/12
Partition GWB	15 days	Tue 6/12/12	Mon 7/2/12
CeilingFraming	5 days	Tue 6/19/12	Mon 6/25/12
Roll-up Doors	5 days	Tue 6/19/12	Mon 6/25/12
Ceiling GW B	17 days	Tue 6/26/12	Wed 7/18/12
CeilingFraming	10 days	Tue 6/19/12	Mon 7/2/12
Tape & Finish	40 days	Tue 7/3/12	Mon 8/27/12
Tel/Com Wiring and Devices [FF]	15 days	Thu 7/19/12	Wed 8/8/12
Fire Alarm Wiring and Devices (FF)	15 days	Thu 7/19/12	Wed 8/8/12
Lighting Wiring and Devices [FF]	20 days	Thu 7/19/12	Wed 8/15/12
Power Wiring and Devices [FF]	20 days	Thu 7/19/12	Wed 8/15/12
CCTV/AC Wiring and Devices [FF]	20 days	Thu 7/19/12	Wed 8/15/12
Prime Paint & First Coat [FF]	5 days	Thu 8/16/12	Wed 8/22/12
CeramicTile [FF]	5 days	Thu 8/23/12	Wed 8/29/12
Polished Floors [FF]	5 days	Thu 8/23/12	Wed 8/29/12
Entrance Mat [FF]	5 days	Wed 9/26/12	Tue 10/2/12
Touch-up and Finish Paint (FF)	8 days	Wed 10/3/12	Fri 10/12/12
Resinous Flooring (FF)	16 days	Wed 10/3/12	Wed 10/24/12
Fiberglass Grating [FF]	5 days	Thu 10/25/12	Wed 10/31/12
Lab Case work [FF]	12 days	Thu 10/25/12	Fri 11/9/12
Doors & Hardware [FF]	12 days	Thu 10/25/12	Fri 11/9/12
Wall Coatings Topcoat [FF]	17 days	Tue 11/13/12	Wed 12/5/12
Hepa Filters [FF]	5 days	Thu 12/6/12	Wed 12/12/12
Wall Protection [FF]	5 days	Thu 12/6/12	Wed 12/12/12
Joint Sealants (FF)	5 days	Thu 12/13/12	Wed 12/19/12
Total	417 days		

CONCRETE SEQUENCING

- THE AREA IN
- THE HALLWAY IN

BIOLOGICAL RESEARCH LABORATORY

IS THE FIRST SLAB TO BE PLACED THE AREA IN ORANGE IS THE SECOND SLAB TO BE PLACED **SLUE IS THE FINAL POUR** • SLAB IS 2.5" GREATER IN DEPTH THEN THE RED AND ORANGE SECTION ALLOWS FOR A LEVEL FINISH BETWEEN MODULES AND HALLWAYS

COST BREAKDOWN

ONLY THE LAB SPACES WERE **QUANTIFIED, WITH A TOTAL** SAVING OF **\$83,500.00**

BSL-3+								
Room	Reduced Material Cost		Material Cost		Reduced labor Cost		Labor Cost	
nimal Holding Room 1	\$	10,852.29	\$	11,423.46	\$	12,732.46	\$	16,976.61
nimal Holding Room 2	s	10,852.29	\$	11,423.46	\$	12,732.46	\$	16,976.61
rocedure Room	s	16,669.77	\$	17,547.13	\$	8,927.78	\$	11,903.70
owning Room	s	19,485.73	\$	20,511.29	s	3,471.24	\$	4,628.32
otal	s	57,860.07	\$	60,905.34	\$	37,863.93	\$	50,485.24
otal Saving	s	3,045.27		+	\$	12,621.31	\$	15,666.58

Room	Reduced M	aterial Cost	Ma	terial Cost	Red	luced labor Cost	L	abor Cost
Holding Room 1	s	10,852.29	\$	11,423.46	\$	12,732.46	\$	16,976.61
ure Room	s	16,669.77	\$	17,547.13	s	8,927.78	\$	11,903.70
ig Room	s	19,485.73	\$	20,511.29	\$	3,471.24	\$	4,628.32
	\$	47,007.79	\$	49,481.88	s	25,131.47	\$	33,508.63
aving	\$	2,474.09		+	\$	8,377.16	\$	10,851.25

Room	Reduced Mat	erial Cost	Ma	terial Cost	Reduced labor Cost	Li	abor Cost
Procedure Room	s	16,669.77	\$	17,547.13	\$ 8,927.78	\$	11,903.70
Gowning Room	s	19,485.73	\$	20,511.29	\$ 3,471.24	\$	4,628.32
BSL 2/3 Rooms	s	8,348.89	\$	8,788.31	\$ 12,578.00	\$	16,770.66
BSL 2/3 Rooms	s	8,348.89	\$	8,788.31	\$ 12,578.00	\$	16,770.66
Total	s	52,853.29	\$	55,635.04	\$ 37,555.01	\$	50,073.34
Total Saving	\$	2,781.75		+	\$ 12,518.34	\$	15,300.09

Room	Reduced Ma	terial Cost	Mat	erial Cost	Reduced labor Cost	Ľ	abor Cost
BSL 2/3 Rooms	s	8,348.89	\$	8,788.31	\$ 12,578.00	\$	16,770.66
Total	s	8,348.89	\$	8,788.31	\$ 12,578.00	\$	16,770.66
Total Saving	\$	439.42		+	\$ 4,192.67	\$	4,632.08

Room	Reduced Material Cost	Material Cost	Reduced labor Cost	Labor Cost		
d IHR	\$ 10,852.29	\$ 11,423.46	\$ 12,732.46	\$ 16,976.61		
ure Room	\$ 16,669.77	\$ 17,547.13	\$ 8,927.78	\$ 11,903.70		
ig Room	\$ 19,485.73	\$ 20,511.29	\$ 3,471.24	\$ 4,628.32		
	\$ 47,007.79	\$ 49,481.88	\$ 25,131.47	\$ 33,508.63		
aving	\$ 2,474.09	+	\$ 8,377.16	\$ 10,851.25		

- IMPLEMENTING MODULARIZATION SAVES \$ 83,500.00
- REDUCTION IN LABOR BY **25%**
- REDUCTION IN MATERIAL BY 5%
- SCHEDULE REDUCED BY APPROXIMATELY 4 MONTHS

Modularization of the Laboratory Spaces

> IM Implementation with Virtual Mockups

Presentation Outline:

CONCLUSION

BIOLOGICAL RESEARCH LABORATORY

Presentation Outline:

Virtual Mockups

PROBLEM

- **RESEARCH SPACE IS EXTREMELY** VALUABLE
 - OVER \$1000.00 PER SQUARE FOOT

GOAL

- **DEVELOP A VIRTUAL MODEL FOR REVIEW BY THE PROJECT TEAM AND** USERS
- **POTENTIALLY FIND HIDDEN** PROBLEMS
- EXAMINE CABINTRY AND EQUIPMENT

THE PRIMARY USER

- DR. GIRISH KIRIMANJESWARA
 - ASSISTANT PROFESSOR OF VETERINARY AND **BIOMEDICAL SCIENCE**
 - GOAL "DEVELOPING PROPHYLATICS AND THERAPEUTICS AGAINST INFECTIOUS **DISEASES**"
- LEADING RESEARCH ONCE THE BIOLOGICAL **RESEARCH LABORATORY IS COMPLETE**
 - PATHOGENESIS OF BORDETELLA

BIM Implementation with Virtual Mockups

BIOLOGICAL RESEARCH LABORATORY

MODEL EXPLORATION

MISSING ITEMS

- LABORATORY CHAIRS
- **BIO-HAZARDOUS TRASHCANS**
- LABORATORY REFRIGERATOR
- INCUBATOR
- CARTS

BIM Implementation with Virtual Mockups

ANALYSIS II

RED FLAGS

- THE AIRLOCK DOOR

BIOLOGICAL RESEARCH LABORATORY

REFRIGERATOR CONFLICTING WITH INCUBATORS CONFLICTING WITH THE PASS THROUGH CABINENTS

POTENTIAL COST SAVINGS

- INCORPORATE LABOR AND MATERIALS
- EQUIPMENT WAS EXCLUDED
- MODELING TIME WAS NOT ESTIMATED
- TOTAL SAVINGS AMOUNTED TO \$111,390.00

Room	Material Cost	Labor Cost
Animal Holding Room 1	\$ 11,423.46	\$ 16,976.61
Animal Holding Room 2	\$ 11,423.46	\$ 16,9 7 6.61
Procedure Room	\$ 17,547.13	\$ 11,903. 7 0
Gowning Room	\$ 20,511.29	\$ 4,628.32
Total	\$ 60,905.34	\$ 50,485.24
Total Saving		\$ 111,390.58

Presentation Outline:

BIM Implementation with Virtual Mockups

CONCLUSION

BIOLOGICAL RESEARCH LABORATORY

THE VIRTUAL MOCKUP HELPED CREATE A BETTER LABORATORY ENVIRONMENT THE MODEL ALSO CAUGHT TWO POTENTIAL PROBLEMS IN THE PROCEDURE ROOM THE REFRIGERATOR AND THE INCUBATOR HAS THE POTENTIAL TO SAVE \$ 111,000.00 IF A FIELD MOCKUP IS NOT CREATED

Virtual Mockups

ANALYSIS III

Shadowing during the Winter Solstice at 8:00 A.M.

Shadowing during the Winter Solstice at 4:00 P.M.

PROBLEM

THE BIOLOGICAL RESEARCH AMOUNT OF ENERGY TO **EFFECTIVELY OPERATE DAILY**

Google Earth Location	State College, PA	ADL and Wiley
		Complex
Site Characteristics	Degrees, Mins, Secs	Degree
Latitude	40°49'23" N	40.823°
Longitude	77°51'29″ W	77.858°
Elevation	1107 <mark>ft</mark>	1107 <mark>ft</mark>

Location	Slope of roof	Total Area
BRL Roof 1	32°	3486 <u>sf</u>
BRL Roof 2	35°	429 <u>sf</u>
BRL Roof 3	35°	529 <u>sf</u>
Parking Canopy	10°	2588 <u>sf</u>
Total Square Feet		6852 <u>sf</u>

BIOLOGICAL RESEARCH LABORATORY

LABORATORY USES AN EXTREME

GOAL

- IMPLEMENT A RENEWABLE ENEGY SYSTEM
- IMPROVE THE LEED RATING FROM SILVER TO GOLD
 - INCORPORATE CAR CANOPIES

SITE ISSUES

- **GREEN USABLE ROOF AREA**
- RED SURROUNDING BUILDINGS
- **BLUE UNUSABLE ROOF AREA**

Presentation Outline:

Virtual Mockups

Sustainability

City (lat°)	Opt. Tilt; kWh/ m²/ day	Hor./ Opt.	% 45° Off/ Opt.	% 90° Off/ Opt.	% 25% L & 45° Off/ Opt.	% 25% L & 90° Off/ Opt.	% 50% L & 90° Off/ Opt.
Rivas (11.4°N)	14°;5.11	97.5%	98.9%	96%	98.9%	96.9%	97.4%
Miami (25.8°N)	24.5°;5.26	93.0%	96.9%	89%	97.1%	90.1%	92.2%
Cairo (30.1°N)	24.5°;5.68	92.6%	96.4%	87.7%	96.7%	89.8%	91.5%
Tuscon (32.1°N)	27.5°;6.59	87.7%	95%	82%	95.1%	84.5%	86.4%
Atlanta (33.6°N)	30°;5.19	89.8%	95.4%	84%	95.8%	86.5%	88.3%
Boulder (40°N)	38°;5.56	83.1%	93.3%	76.5%	93.3%	79.2%	81.4%
Madrid (40.5°N)	33°;5.08	87.2%	94%	79.4%	94.4%	82.7%	85.2%
Boston (42.2°N)	37°;4.63	84.7%	93.4%	77.6%	93.5%	80.7%	82.7%
Seattle (47.4°N)	34°;3.83	87.2%	94.6%	80.5%	94.8%	83.4%	85.7%
London (51.2°N)	34.5°;3.17	87.4%	93.8%	79%	94.3%	82.3%	84.9%
Fairbanks (64.8°N)	51°;3.43	74.6%	91.5%	70.7%	91%	72.4%	73.5%
The cities explained	countries a here: <u>2</u> .	re name	ed and t	he tabl	e abbre	viations	are

DESIGN

- CANOPIES 96 PANELS
- TOTAL SYSTEM: 246 PANELS

BIOLOGICAL RESEARCH LABORATORY

ROOF 1: CONSISTS OF 120 PANELS ROOF 2: CONSISTS OF 30 PANLES

ENERGY LOADS

- EMORY UNIVERSITY'S SYSTEM PARAMETERS
 - SIMILAR CALCULATIONS WERE PREFORMED ON THE BRL SYSTEMS

System	Key Design Parameters	Annual Energy Estimate (based on design data)
Ventilation (sum of wattage of all the supply fans and all the exhaust fans	Supply = 1.0 W/cfm Exhaust = 1.25 W/cfm Total = 1.13W/cfm (1.0 cfm/gross ft ² ; 1.5 cfm/net ft ² and 2.1 cfm/gross ft ² of labs)	19.8 kWh/gross ft²
Cooling Plant	2300 tons, 1.0kW/ton	20.4 kWh/gross ft ^z
Lighting	1.6Wft ²	7.25 kWh/gross ft ^z
Process/Plug	11 W/net ft ^z	32.4 kWh/gross ft ^z
heating Plant	Not available	Not available
Total		79.85 kWh/gross ft²/yr (estimate based on design data for electricity only)

MICHAEL CARBONARA | CONSTRUCTION OPTION | April 13, 2012

• 79.85 kWh/GROSS FT²/YR (BELOW) TO 80.33 kWh/GROSS FT²/YR CALCULATED

ENERGY IMPACT

Summary Station	Identification	Summary Results					
City:	Willia ms port	Month	Solar Radiation	AC Energy	Energy Value		
State:	Pennsylvania		(kWh/m ² /day)	(kWh)	(\$)		
La titu de:	41.27° N	1	2.55	4388	263.28		
Longitude:	77.05° W	2	3.21	5071	304.26		
Elevation:	243 m	з	4.22	7213	432.78		
PV System Specifications		4	4.63	7499	449.94		
	29.5 kW + 8.9 kW +	5	5.43	8901	534.06		
DC Rating:	35.4 kW - 73.7 kW	6	5.68	8814	528.84		
DC to AC Derate Factor:	0.77	7	5.70	8926	535.56		
AC Rating:	27.3 kW	8	5.22	8103	486.18		
Array Type:	Fixed Tilt	9	4.38	6762	405.72		
Array Tilt:	10.0°, 32.0° 35.0°	10	3.36	5335	320.1		
Array Azimuth:	135.0°, 180°	11	2.23	3455	207.3		
Energy Specifications		12	1.99	3243	194.58		
Cost of Electricity:	6.0 ¢/kWh	Year	4.05	77710	4662.6		

Presentation Outline:

Virtual Mockups

Sustainability

• USING PVWATTS A TOTAL OF 77,700 kWh CAN BE GENERATED **\$ 4662.60 IN SAVINGS PER YEAR**

FEASIBILITY ANALYSIS (SAM)

- **IMPLEMENT A POWER PURCHASE AGREEMENT**
 - LCOE OF 5.88 CENTS/kWh
 - NET PRESENT VALUE OF \$5,771.71

e Case)							
1	I		1	1	1	1	_
							-
							-
							-
-							
							_
							- 1
9	10	11	12	13	14	15	

BIOLOGICAL RESEARCH LABORATORY

LEED EVALUATION V2.2

- SUSTAINABLE SITES
 - (1)
- ENERGY AND ATMOSPHERE

Virtual Mockups

Sustainability

Presentation Outline:

Γ	
5	ί
F	-
L	

ELECTRICAL BREADTH

	NUMBER	NUMBER	WIRE SIZE	WIRE SIZE FROM	WIRE SIZE FROM	WIRE SIZE FROM	WIRE SIZE FROM
ROOF	OF PANELS	OF STRINGS	BETWEEN	D/C DISCONNECT	INVERTER TO A/C	A/C DISCONNECT	TO SPLICE BOX
			MODULES	TO INVERTER	DISCONNECT	TO SPLICE BOX	TO PANEL
							BOARD
PARKING CANOPIES	24	2	12 AWG	8 AWG	10 AWG	10 AWG	1 AWG
SMALL ROOF	30	3	12 AWG	6 AWG	8 A WG	8 AWG	8 AWG
LARGE ROOF	120	12	12 AWG	6 AWG	8 A WG	8 AWG	2/0 A WG

BIOLOGICAL RESEARCH LABORATORY

Presentation Outline:

Sustainability

CONCLUSION

- PHOTOVOLTAIC SYSTEM
- **PPA FINANCIALLY VIABLE**

MICHAEL CARBONARA | CONSTRUCTION OPTION | April 13, 2012

CREATES 3% OF RENEWABLE ENERGY INCREASES LEED RATING TO GOLD • 38 POINTS TO 41 POINTS

Virtual Mockups

ANALYSIS IV

PROBLEM

- **PROJECT IS BEHIND SCHEDULE BY 5 WEEKS**
 - DUE TO PERMITTING
 - **UNFORESEEN WEATHER** CONDITIONS

BIOLOGICAL RESEARCH LABORATORY

RESEARCH GOAL

- **DEVELOP A SCHEDULE ACCELERATION SCENARIIO**
 - TO MAKE UP LOST TIME WITH OVERTIME HOURS EACH WEEK
 - FOCUS ON CRITICAL PATH TRADES

ANALYSIS IV

BIOLOGICAL RESEARCH LABORATORY

ENTRY - FROM EAST

WORK SCHEDULES

- **ROLLING 4 DAY-10 HOUR**
- 6 DAY-10 HOUR
- 5 DAY-8 HOUR

Presentation Outline:

Labor Resources Schedule [/] Acceleration

Virtual Mockups

STEEL CREW

- **EFFECTIVE HOURS 194.8**
 - 5 DAY-8 HOUR 5 WEEKS
 - 6 DAY-10 HOUR 3 WEEKS, 5 DAYS
 - ROLLING 4 DAY-10 HOUR 2 WEEKS, 4 DAYS

6-10's	Productivity	Hours	Effective	Rolling 4-10	Productivity	Hours	Effective
Week 1	0.95	60	57	Week 1	1.18	60	70.8
Week 2	0.9	60	54	Week 2	1.33	60	79.8
Week 3	0.87	60	52.2	Week 3	1.5	60	90
Week 4	0.83	60	49.8	Week 4	1.55	60	93
Week 5	0.79	60	47.4	Week 5	1.6	60	96
Week 6	0.75	60	45	Week 6	1.65	60	99
Total	0.848333333	360	305.4	Total	1.4683333333	360	528.6

5-8's	Productivity	Hours	Effective
Week 1	0.99	40	39.6
Week 2	0.98	40	39.2
Week 3	0.97	40	38.8
Week4	0.97	40	38.8
Week 5	0.96	40	38.4
Total	0.541111111	200	194.8

ANALYSIS IV

Presentation Outline:

Virtual Mockups

Labor Resources Schedule Acceleration

CREW WEEKLY MAKE-UP NOMINAL ROLLING 4 DAY 10 HOUR SCHEDULE

WEEK	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
1	Crew 1	Crew 1	Crew 1	Crew 1	Crew 2	Crew 2	
1	Crew 2	Crew 2	Crew 3	Crew 3	Crew 3	Crew 3	
2	Crew 1	Crew 1	Crew 1	Crew 1	Crew 2	Crew 2	
2	Crew 2	Crew 2	Crew 3	Crew 3	Crew 3	Crew 3	
2	Crew 1	Crew 1	Crew 1	Crew 1	Crew 2	Crew 2	
5	Crew 2	Crew 2	Crew 3	Crew 3	Crew 3	Crew 3	NÖ
4	Crew 1	Crew 1	Crew 1	Crew 1	Crew 2	Crew 2	WÖRK
4	Crew 2	Crew 2	Crew 3	Crew 3	Crew 3	Crew 3	
E	Crew 1	Crew 1	Crew 1	Crew 1	Crew 2	Crew 2	
5	Crew 2	Crew 2	Crew 3	Crew 3	Crew 3	Crew 3	
c	Crew 1	Crew 1	Crew 1	Crew 1	Crew 2	Crew 2	
0	Crew 2	Crew 2	Crew 3	Crew 3	Crew 3	Crew 3	

WEEK	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
1	Crew 1	Crew 1	Crew 1	Crew 1	Crew 2	Crew 2	
1	Crew 2	Crew 2	Crew 3	Crew 3	Crew 3	Crew 3	
2	Crew 2	Crew 1	Crew 1	Crew 1	Crew 1	Crew 2	
2	Crew 3	Crew 2	Crew 2	Crew 3	Crew 3	Crew 3	
2	Crew 2	Crew 2	Crew 1	Crew 1	Crew 1	Crew 1	
3	Crew 3	Crew 3	Crew 2	Crew 2	Crew 3	Crew 3	NO
	Crew 1	Crew 2	Crew 2	Crew 1	Crew 1	Crew 1	WORK
4	Crew 3	Crew 3	Crew 3	Crew 2	Crew 2	Crew 3	
F	Crew 1	Crew 1	Crew 2	Crew 2	Crew 1	Crew 1	
5	Crew 3	Crew 3	Crew 3	Crew 3	Crew 2	Crew 2	
6	Crew 1	Crew 1	Crew 1	Crew 2	Crew 2	Crew 1	
0	Crew 2	Crew 3	Crew 3	Crew 3	Crew 3	Crew 2	

• STAGGERING ROLLING 4 DAY 10 HOUR SCHEDULE

COST BREAKDOWN

5 Day 8 Hour V	Vork	Schedu	ile		4 Day 10 Hour Rolling Work Schedule					
Steel Erecting Crew	Hr.		Daily	/	Steel Erecting Crew	Hr.		40	hrs./ Week	
1 Structural Steel Foreman	\$	85.95	\$	687.60	2 Structural Steel Foreman	\$	85.95	\$	6,876.00	
4 Structural Steel Workers	\$	82.45	\$	2,638.40	6 Structural Steel Workers	\$	82.45	\$	19,788.00	
1 Crane Operator	\$	66.45	\$	531.60	2 Crane Operator	\$	66.45	\$	3,987.00	
1 Equipment Operator	\$	57.35	\$	458.80	1 Equipment Operator	\$	57.35	\$	3,441.00	
1 lattice Boom Crane			\$	1,767.70	Weekly Totals			\$	34,092.00	
56 L.H. Daily Totals			\$	6,084.10	1 lattice Boom Crane			\$	8,838.50	
Week			\$	30,420.50	Week			\$	42,930.50	
5 Weeks			\$	152,102.50	2 Weeks 4 days			\$	117,427.50	

60	ay 1	0 Hour	Wo	rk Schedule				
Steel Erecting Crew	Hr.		40	hrs./Week	Οv	ertime	20	hrs.
1 Structural Steel Foreman	\$	85.95	\$	3,438.00	\$	128.93	\$	2,578.50
4 Structural Steel Workers	\$	82.45	\$	13,192.00	\$	123.68	\$	9,894.00
1 Crane Operator	\$	66.45	\$	2,658.00	\$	99.68	\$	1,993.50
1 Equipment Operator	\$	57.35	\$	2,294.00	\$	86.03	\$	1,720.50
Weekly Totals			\$	21,582.00			\$	16,186.50
1 lattice Boom Crane			\$	8,838.50				
Week			\$	30,420.50			\$	46,607.00
3 Weeks 5 days							\$:	178,334.75

ANALYSIS IV

Presentation Outline:

Virtual Mockups

Labor Resources Schedule [/] Acceleration

ADDITIONAL TRADES

- **CONCRETE SLABS 3 WEEKS**

 - SAVINGS OF 1 WEEK
- MASONRY TRADE 5 WEEKS

 - SAVINGS OF 2 WEEK

6-10's	Productivity	Hours	Effective	Rolling 4-10	Productivity	Hours	Effective
Week 1	0.95	60	57	Week 1	1.18	60	70.8
Week 2	0.9	60	54	Week 2	1.33	60	79.8
Week 3	0.87	60	52.2	Week 3	1.5	60	90
Week 4	0.83	60	49.8	Week 4	1.55	60	93
Week 5	0.79	60	47.4	Week 5	1.6	60	96
Week 6	0.75	60	45	Week 6	1.65	60	99
Total	0.848333333	360	305.4	Total	1.468333333	360	528.6

ROLLING SCHEDULE (1 WEEK 4 DAYS)

ROLLING SCHEDULE (2 WEEKS 3 DAYS)

5-8's	Productivity	Hours	Effective
Week 1	0.99	40	39.6
Week 2	0.98	40	39.2
Week 3	0.97	40	38.8
Week 4	0.97	40	38.8
Week 5	0.96	40	38.4
Total	0.541111111	200	194.8

CONCLUSION

- **IMPLEMENTING A ROLLING 4 DAY 10 HOUR SCHEDULE**
 - SAVES 5 WEEKS ON THE SCHEDULE
 - SAVES \$ 35,000.00 IN JUST THE STEEL TRADE

RECOMMENDATIONS

ANALYSIS: I MODULARIZATION

- I RECOMMEND IMPLEMENTING MODULAR UNITS BASED ON THE: COST SAVINGS OF \$ 83,500.00 **SCHEDULE REDUCTION OF 4 MONTHS** THE ABILITY TO DELIVER A HIGHER QUALITY OF WORK

ANALYSIS: II BIM IMPLEMENTATION (VIRTUAL MOCKUPS)

- VIRTUAL MOCKUPS SHOULD BE USED ON THE BRL FACILITY BECAUSE
 - POTENTIAL TO CATCH DESIGN ERRORS
 - CAN ELIMINATE FIELD MOCKUPS
 - COST SAVING IN LABOR AND MATERIALS \$110,000.00

RECOMMENDATIONS

ANALYSIS: III SUSTAINABILITY

THE 246 PHOTOVOLTAIC PANEL SYSTEM SHOULD ONLY BE INSTALLED IF : THE UNIVERSITY AGREES TO A PPA AGREEMENT THE THIRD PARTY HAS THE ABILITY TO STILL APPLY FOR **GOVERNMENT INCENTIVES**

ANALYSIS: IV SCHEDULE ACCELERATION

- A ROLLING 4 DAY 10 HOUR SCHEDULE SHOULD BE INCORPORATED BECAUSE:
 - THE SCHEDULE HAS THE POTENTIAL TO MAKE UP THE 5 WEEKS OF LOST **WORK**
 - CONSIDERABLE COST SAVINGS CAN BE QUANTIFIED

PROJECT ACKNOWLEDGEMENTS

тогсоп

PENNSTATE Office of Physical Plant

Jeff Spackman of OPP The Research and Graduate School at The Pennsylvania State University Girish S. Kirimanjeswara **PACE Industry Members AE Senior Thesis Class - CKW** My Family

ACKNOWLEDGEMENTS:

Penn State AE Faculty Sonali Kumar Dr. Robert Leicht: CM advisor **Susan Stewart**

SPECIAL THANKS:

References:

1. SKANSKA. "Prefabricated Case Study." www.coaa.org/Portals/0/.../Marty%20Corrado_PreFabrication.pdf. Web. 23 Feb. 2012. 2. "Prefab Trailblazer." Building Design Construction: For Commercial Design & Construction Pro. BD&C Network, Oct. 2010. Web. 02 Feb. 2012. <http://www.bdcnetwork.com/print/23149>.

3. Cameron, Peter J., and Nadia G. Di Carlo. "Piecing Together Modular: Understanding the Benefits and Limitations of Modular Construction Methods for Multifamily Development." Massachusetts Institute of Technology (2007): 1+. Print. 4. Post, Nadine M. "Prefabulous Hospital Delivery." Engineering News Record (2010). Enr. com. 13 Sept. 2010. Web. 24 Feb. 2012. 5. Taylor, Stephen. "Offsite Production in the UK Construction Industry – Prepared by HSE." Build Offsite. HSE. Web. 28 Feb. 2012. <ww.buildoffsite.com/downloads/off-site production june09.pdf>.

6. Haas, Carl T., and Walter R. Fagerlund. "PRELIMINARY RESEARCH ON PREFABRICATION, PRE-ASSEMBLY, MODULARIZATION AND OFF-SITE FABRICATION IN CONSTRUCTION." The Construction Industry Institute. The University of Texas at Austin, July 2002. Web. 24 Feb. 2012.

7. "Prefabrication and Modularization: Increasing Productivity in the Construction Industry." Prefabrication and Modularization: Increasing Productivity in the Construction Industry. MGraw Construction. Web. 04 Apr. 2012. <http://www.nist.gov/el/economics/prefabricationandmodularization.cfm>. 8. Mayo, Richard, Kraig Knutson, Gary Barras, and Julio Pineda. "Conference Papers." Caledonian University. RICS Foundation. Web. 24 Feb. 2012. <www.rics.org/site/download_feed.aspx?fileID=2517...PDF>. 9. "Overtime and Productivity." Project Management Services. Web. 24 Feb. 2012. <www.delmar.com/Templates/Overtime%20and%20Productivity.pdf>.

10. Brunies, Regula. "Calculating Loss of Productivity Due to Overtime Using Published Charts – Fact or Fiction." The Revay Report. Revay and Associates, Nov. 2001. Web. 24 Feb. 2012. <ww.revay.com/eng/publications/ - Canada>. 11. Saxena, Rohit. "LABORATORIES FOR THE 21ST CENTURY:CASE STUDIES." Laboratories 21 Century. Environmental Protection Agency, Apr. 2005. Web. 16 Feb. 2012. <www.labs21century.gov/pdf/cs_emory_508.pdf>. 12. "How Does a Vacuum Tube Work." Solar Heating with Solar Heaters-Solar Home Heating with Solar Evacuated Tubes including Solar Water Heating & Solar Pool Heatin. Solar Solutions. Web. 02 Apr. 2012. <http://www.solartubs.com/how-do-solar-vacuum-tubeswork.html>

13. Watson, David E. "Importance of Tilt Angle." Science and Technology Education from Flying Turtle Exploring. Web. 02 Apr. 2012. <http://www.ftexploring.com/solar-energy/tilt-angle3.htm>.

14. Messner, John I., Kurt D. Maldovan, and Mera Faddoul. "FRAMEWORK FOR REVIEWING MOCKUPS IN AN IMMERSIVE ENVIRONMENT." Architecture, Engineering, and Construction (AEC). The Pennsylvania State University. Web. 1 Mar. 2012. <www.engr.psu.edu/convr/.../papers/01_Dunston_submission_45.pdf>. 15. Leicht, Robert M., Sonali Kumar, John I. Messner, and Moawia Abdelkarim. "Penn State CIC Program." Penn State College of Engineering. Web. 02 Apr. 2012. http://www.engr.psu.edu/ae/cic/people/kumar.aspx>.

BIOLOGICAL RESEARCH LABORATORY

QUESTIONS?

Structural Breakdown Cost	Crew	Daily Output	Labo r Hours	Unit	Material	la bo r	Eq uipment	Total	Total Incl 0&P		Cost
Materia I											
2" dee psteel decking Ga. 19	E-4	3490	0.009	S.F.	1.53	0.44	0.04	201	2.41	\$	1,484.56
3 dee psteel decking Ga. 19	E-4	2925	0.011	S.F.	1.65	052	0.05	2.22	2.66	\$	1,638.56
										\$	(154.00
StructuralSteel											
8X10	E-2	600	0.093	L.F.	12.1	4.26	268	19.04	23.5	\$	(188.00
14X30	E-2	900	0.062	L.F.	36.5	284	1.79	41.13	47	\$	(940.00
16X45	E-2	800	0.07	L.F.	54.5	3.19	201	59.7	71.64	\$	(1,576.08
12/19	E-2	80	0.064	L.F.	32.6	29	1.83	37.33	44.796	\$	1,791.84
8X13	E-2	600	0.093	L.F.	15.21	4.26	268	22.15	25.58	\$	425.28
14X22	E-2	990	0.057	L.F.	31.5	258	1.62	35.7	4284	\$	9 42 48
Concerto Chiloh	C R	700	0.077	C 7	1.00	0.70	0.77	204	20		1541.47
Concreteo'slab	0.8	2000	0.022	5.F.	1.90	0.76	0.2	3,04	3.07	2	1,541.40
										>	1,027.60
Fireproofing											
1 inch thick	G-2	2400	0.01	S.F.	0.53	0.35	0.06	094	1.16	\$	(5 10, 40
Total Savines			l							Ś	818.72
										Per	Typical Bay
											. Thursday and L

Energy Load Analysis for Biological Research Facility $746\left(\frac{W}{hp}\right)$ $\frac{W}{cfm} \text{ for supply air} = 76.667 \text{ hp } \ast$ 24228 cfm $\frac{W}{cfm} for return air = 90.1 hp * \left[\frac{710 (hp)}{21726 cfm}\right] = 3.09 \frac{W}{cfm}$ $\frac{2.28 + 3.09}{2} = 2.685 \frac{W}{cfm} \frac{21726 cfm (total cfm based on exhaust)}{20000 sf} = 1.08 \frac{cfm}{gross sf}$ Ventilation - 2.685 $\frac{W}{cfm}$ * 1.08 $\frac{cfm}{gross\,sf}$ * $\left(\frac{8760\ hours}{1000}\right) = 25.40 \frac{kWh}{gross\,sf}$ **Cooling** - $\frac{1kW}{ton}$ * 280 tons * $\frac{963 \text{ hours}}{20000 \text{ gross sf}} = 13.48 \frac{kWh}{gross sf}$ **Lighting** - $1.0 \frac{W}{aross} ft^2 * \left(\frac{4534 \text{ hours}}{1000}\right) = 4.534 \frac{kWh}{aross sf} **$ **Assumes lights are on for 87.2 hours a week **Process/Plug** - 5.735 $\left(\frac{W}{gross\,sf}\right) * 0.80 * \frac{5256\ hours}{1000} = 24.11 \frac{kWh}{gross\,sf} * **$ ***Assumes that 80% of all equipment is operating 60% of the hours in a year Heating - 44.3 $kW * \frac{5782 \text{ hours}}{20000 \text{ sf}} = 12.81 \frac{kWh}{gross \text{ sf}}$ Total = $(25.40+13.48+4.53+24.11+12.81) = 80.33 \frac{kWh}{aross sf}$ $107.31 \frac{kWh}{gross \, sf} * 20000 \, sf = 2,146,200 \, kWh/yr$ $\frac{2,146,200 \, kWh}{yr} * \frac{1 \, yr}{12 \, months} = \frac{178,850 \, kWh}{month} * \frac{1 \, month}{30 \, days} = \frac{5,961 \, kWh}{day}$

BIOLOGICAL RESEARCH LABORATORY

Parking Canopies (7.5-1) Electrical Calculations DC Side Isc= 9.16 A 25% Safety Factor and another 25% for wire and fuses Add 2 strings in parallel the amps multiply by 2 Max Wire Amp for 2 strings= lsc*1.25*1.25*2= 9.16*1.25*1.25*2=28.62 Max wire amp for 1 string= lsc*1.25*1.25=9.16*1.25*1.25=14.31 A The minimum current carrying capacity of the wires between the combiner box and the inverter is 28.62 Amp Conduit 1" above the roof add 22°C Max Temp= 38°C Ambient Temp= 38+22= 60°C Correction factor for $60^{\circ}C=.71$ outside on roof #12 AWG @ 90°C= 30A* .71= 21.3A > 14.31 A ok to uses for connecting string to combiner box #8 AWG @ 90°C= 50A * .71= 35.5 A> 28.62 (Max wire Amp), so wire is OK to use between the combiner box and inverter Electrical Calculations AC Side Inverter Max AC Output 27.1A to connect to panelboard Use 1.25 times inverter max output then round to the nearest breaker size for 27.1*1.25=33.875 Amp #10 AWG @ 90°C= 40A > 33.875 (Max wire Amp), so wire is OK to use between A/C disconnect and underground splice box 33.875*4=135.5 Amps wire sizing from parking canopy to electrical box inside building 135.5 A < 150 A so #1 AWG in a 2" rigid PVC pipe Next breaker size 150Amp Assumed THWN 90°C from table 310.16 #1 Wire 135.5 Amps = 150 A Breaker size so OK to use

When connecting to an electrical panel a 150 A breaker is to be used to sufficiently take the load.